PROBLEMAS RESUELTOS DE FÍSICA
ejercicios resueltos de circuitos electricos

Ver enunciado en

Ejercicios resueltos de circuitos

Estás en : Matemáticas y Poesía > Ejercicios resueltos

 

Ejercicios sobre circuitos

Respuesta al ejercicio 16

Tomando el nudo 1 y el punto de referencia en la forma señalada en la figura,

cicuito

la ecuación nodal es:

    \(\displaystyle \frac{V_1 + 100|\underline{120║}}{20} + \frac{V_1}{10} + \frac{V_1-100|\underline{0║}}{10} = 0 \)
de la que podemos obtener:
    \(\displaystyle V_1 = \frac{200|\underline{0║}- 100|\underline{120║}}{5} = 50- 17,32Ěj = 53|\underline{-19,1║} \)
Podemos pasar ahora a calcular las intensidades de corriente para cada rama:
    \(\displaystyle \begin{array}{l} J_A = \frac{V_1+100|\underline{0║}}{20} = \frac{50-17,32j - 50+ 86,6j}{20} = 3,46|\underline{90║}\\  \\ J_B = \frac{V_1}{10} = 5,3|\underline{-19,1║}\\  \\ J_C = \frac{V_1-100|\underline{0║}}{10} = \frac{50-17,32j - 100}{10} = 5,3|\underline{-160,9║} \end{array} \)
Podemos observar que la suma de las tres corrientes que entran en el nudo de referencia es igual a cero:
    \(\begin{array}{l} J_A + J_B + J_C = 3,46|\underline{90║}+ 5,3|\underline{-19,1║} + 5,3|\underline{-160,9║} =\\ = (3,46j) + (5-1,73j)- (5-1,73j) = 0 \end{array} \)
PROBLEMAS RESUELTOS DE CIRCUITOS ELECTRICOS
 


tema escrito por: José Antonio Hervás