PROBLEMAS RESUELTOS
DE FÍSICA
ejercicios resueltos de termodinámica

Ver enunciado del ejercicio en:

Ejercicios de termodinámica

Estás en :
Matemáticas y Poesía >

Ejercicios resueltos

 
Ejercicios de termodinámica

Un cilindro separado del exterior por paredes adiabáticas está dividido en dos partes por un pistón adiabático móvil. En un principio, Po, Vo y To son los mismos a ambos lados del pistón. El gas contenido en el cilindro es ideal y tiene una capacidad calorífica independiente de la temperatura y un índice adiabático, g (letra g), de valor 1,5.
Mediante una resistencia introducida en el gas de la izquierda, se suministra calor lentamente hasta que la presión toma un valor:
    \(\displaystyle P_{iz} = \frac{27}{8}P_0\)

En términos de No, R y Vo determinar el volumen y la temperatura final del gas de la derecha y la temperatura final del gas de la izquierda.

- Respuesta al ejercicio 35


El gas de la derecha sufre un proceso adiabático, por consiguiente, podemos aplicar las ecuaciones de Poisson:

    \( \displaystyle PV^\gamma = Cte \; ; \; P_0V_0^\gamma =P_2V_2^\gamma \rightarrow P_0V_0^\gamma = \frac{27}{8}P_0V_2^\gamma \rightarrow \)
    \( \displaystyle \rightarrow V_2 = \left(\frac{8}{27}\right)^{1/\gamma}V_0 = \left(\frac{8}{27}\right)^{2/3}V_0 = \frac{4}{9}V_0 \)

De ahí obtenemos para aplicar más tarde:
    V2 + V1 = 2 V0 → V1 = 2 V0 - V2 = 2 V0 - (4/9) V0 = (14/9) V0
Como el gas es ideal, podemos poner:

    \( \displaystyle PV = NR\theta \rightarrow N_0 = \frac{P_0V_0}{R\theta_0}\; ; \; \theta_0 = \frac{P_2V_2}{RN_0} \)

Donde hemos considerado que el número de moles es constante por no haber salida ni entrada de gas. Continuando:

    \( \displaystyle \begin{array}{l} \theta_2 = \frac{P_2V_2}{RN_0} = \frac{1}{N_0R}V_2P_2 = \\  \\ = \frac{1}{R}\frac{R\theta_0}{V_0P_0}\frac{27}{8}P_0\frac{4}{9}V_0 =\frac{3}{2}\theta_0 \end{array} \)

Para calcular la temperatura del gas de la izquierda hacemos:

    \( \displaystyle P_1V_1 = NR\theta_1\; ; \; \theta_1 = \frac{P_1V_1}{N_0R} \)

Y sustituyendo valores de presión y volumen:

    \( \displaystyle \theta_1 = \frac{P_1V_1}{N_0R} = \frac{\left(\frac{27}{8}P_0\right)\left(\frac{14}{9}V_0\right)}{N_0R} = \frac{21}{4}\theta_0 \)
EJERCICIOS RESUELTOS DE TERMODINÁMICA FÍSICA PARA CIENCIAS E INGENIERÍA
Otros usuarios de Matemáticas y poesía también han visto:




tema escrito por: José Antonio Hervás