PROBLEMAS RESUELTOS DE MATEMÁTICAS
ejercicios resueltos de optimización

Ver enunciado del ejercicio en:

Problemas de optimización

Estás en : Matemáticas y Poesía > Problemas resueltos

 

Ejercicios de programación matemática

Respuesta del ejercicio 3
Para desarrollar el problema hacemos:
    \( (x_1-2)^2 + (x_2-2)^2 = a^2 \)
Y tenemos una circunferencia de radio a y centro en (2, 2). Por lo tanto, para obtener el mínimo de z necesitamos calcular el mínimo valor de a que cumple las restricciones. Gráficamente tenemos la situación de la figura y en ella vemos que el valor mínimo de a que verifica las restricciones es el de la perpendicular desde el punto (2, 2) a la recta dada por:
    \( \displaystyle x_1 + 2x_2 = 3 \Rightarrow x_2 = \frac{1}{2}·x_1 +\frac{3}{2}\)
pues en dicho punto se tiene:
    \( 8·x_1 + 5·x_2 \leq 10\)
y de ese modo se cumplen todas las restricciones.

gráfico para optimización


Para obtener la perpendicular hacemos:
    \( \displaystyle x'_2 = m'x'_1 + c \quad ; \quad m'= - \frac{1}{m} = - \frac{1}{1/2} = 2 \)
y puesto que pasa por el punto (2, 2):
    \( \displaystyle x'_2 - 2 0 2(x'_1-2)\Rightarrow 2·x'_1 - x'_2 = 2 \)
con lo que tendremos:
    \( \displaystyle \left. \begin{array}{c} x_1 + 2·x_2 = 3 \\ \\ 2·x_1 - x_2 = 2 \\ \end{array} \right\}\quad x_1 = \frac{7}{5}\quad ; \quad x_2 = \frac{4}{5}\Rightarrow z_\min = 1,8 \)
EJERCICIOS RESUELTOS DE OPTIMIZACIÓN MATEMÁTICA PARA INGENIERÍA Y CIENCIAS


tema escrito por: José Antonio Hervás